
Security Analysis of Telegram
6.857 Final Project

Hayk Saribekyan (hayks@mit.edu)
Akaki Margvelashvili (margvela@mit.edu)

May 18, 2017

Abstract

Telegram is an instant text messaging platform, with a secure mes-
saging protocol called MTProto. The company was founded in 2013
and has more than 100 million active users. Telegram was created
to allow users to have surveillance-proof communication. It claims to
have the best security and privacy guarantees in the market. In this
report we overview Telegram, discuss its protocol and compare it to
similar products. We also exploit a leak on user availability and use
it to predict when users are talking to each other.

1 Introduction

In the past decade, as more and more people got access to the internet, in-
stant messaging services have thrived. As of May 2017, two of the top five
most downloaded applications on Android market are messaging services [1].
In recent years the users of communication tools, including messaging ser-
vices, have become more conscious about the privacy and security concerts.
To suit the users’ needs better, many platforms started offering end-to-end
encryption [2, 3]. WhatsApp1, for example, introduced end-to-end encryp-
tion three years ago and as of now it is enabled for all its communications. It
has the largest user base that has end-to-end encryption enabled for everyone.

Among many messaging services is Telegram, which has been founded in
2013. Despite being a newcomer to the field, it has more than 100 million

1Which, by the way, is down at the time of writing :)

1



monthly users, especially in Eastern Europe. Telegram claims to have the
best security and privacy guarantees among similar products, but relies on
the users to trust it by the virtue of its history and talent. For our project, we
would like to perform a security analysis of Telegram [4], as it has come un-
der heavy fire from many professional cryptographers due to its unorthodox
decisions in development.

In this section, we will discuss Telegram’s history and user interface. Sec-
tion ?? describes Telegram’s system design; Section 3 contains previously
known issues with Telegram; Sections 4 and 5 discuss a privacy vulnerabil-
ity that Telegram exposes. In Section 6 we reflect on Telegram and draw
conclusions.

1.1 History and Background

Telegram’s history is unique among tech stratups and we believe that it
gained much attention, trust and user base thanks to that. So it is worth to
mention the history as a background.

Telegram was founded in 2013 by brothers Nikolai and Pavel Durov, who
was also the founders of a popular Russian social network VK. After pressure
from the Russian government to hand over backdoors Durov left the company
and claimed that VK is under control of the political party in power [5]. He
then left Russia and founded Telegram, aiming to provide surveillance-proof
messaging to non-tech-savvy users.

Thanks to Pavel Durov’s popularity in Russia, Telegram quickly gained
ground among Russian-speaking community. Moreover, Telegram arguably
provides one of the best user experiences compared to similar products thanks
to its speed and functionality.

Telegram’s messaging protocol is developed by Pavel’s brother Nikolai,
who is a mathematician, but is not known as a security expert.

Telegram is unique among tech startups in that its solve funding source
is the founder Pavel Durov. It does not use adds anywhere on its platform
and the clients are not only free, but also open-source.

1.2 Telegram Functionality

Telegram allows users to send instant messages, voice messages and commu-
nicate in groups. It also has ’channels’, to which users can subscribe and

2



receive broadcast messages by the creator of the channel (usually a news
website or a celebrity).

Telegram has a ’secret chat’ feature, which is not enabled by default. The
secret chats are Telegram’s version of end-to-end encryption. The messages
are destroyed after a time limit set by the user and should not recoverable.
Telegram has chosen to not make messages end-to-end encrypted by default
to enhance user experience: secret chats are bound to specific devices and
it is impossible to continue a conversation on a device it was not started
on. We do not believe that this is acceptable as many non-tech-savvy users
assume that no one can ever access their messages, when in fact they trust
the server for the security.

Users in Telegram have to create and authenticate their accounts using
an authentication code received by text messages. After the initial authenti-
cation, the users can set handles and find each other using those. Telegram
also has a two-step verification mechanism for which the user has to enter a
password every time s/he authenticates.

1.3 Telegram Clients

Telegram has clients for all popular platforms including web applications.
Figure 1 shows Telegram’s clients for Android and Desktop. The official
clients are open-source though they have binary blobs i.e. executable binaries
without publicly available codes.

Telegram even has a command line interface [6], which provides almost
full functionality of the messaging platform albeit it is not as user-friendly.
For example, to add a contact one has to write in the interface
tg> add contact <phone number> <name> <lastname>

We have extensively used the command line interface during this project.

2 Telegram Architecture

Like many of its competitors Telegram follows a conventional approach of
using a cloud storage for its data. This means that if an adversary is able
to gain control of their server system, they will have access to (at least)
unencrypted messages and definitely to all the metadata. The messages
between users and the server are passed according to Telegram’s home-grown
MTProto messaging protocol.

3



Figure 1: Official Telegram clients. Left: mobile client, right: desktop client.
All official Telegram clients are open-source. Telegram provides noticeable
faster and smoother user experience.

The users use a Diffie-Hellman key exchange to generate a common key
that is then used to pass messages. They communicate with the server using
the server’s public RSA key, which is hard-coded in the Telegram clients and
changes rarely.

Telegram is using home-grown MTProto protocol, that circumvents many
traditional approaches for messaging passing. Telegram claims that this
is done for its superior performance, although many security experts have
doubts about the claims.

3 Known and Fixed Security Concerns

Just like any other tech company, Telegram had, has and will have bugs,
security issues and in general security-related issues that are unorthodox in
the community. We are presenting some of them here. In next sections we
will focus on one of them.

3.1 Non-technical concerns

On a conceptual level, Telegram has some non-standard practices that we
believe should not be part of a secure protocol. Namely:

4



• Telegram’s end-to-end encryption feature is not enabled by default on
the application [7]. For this reason, lots of the users who don’t have
enough expertise on security/encryption end up using the Telegram
without ’secret chat’ feature thinking their messages are encrypted.
Without secret chats, the users have to trust Telegram servers.

• Telegram uses a home-grown cryptographic protocol called MTProto,
a decision which has been heavily criticized; common security doc-
trine dictates that developers should never ”roll their own” crypto, and
should leave cryptographic protocol design to the experts. Those who
have examined the protocol themselves have also come away skeptical;
cryptographer Matt Green commented that ”Telegram is ten million
rube goldbergian moving parts, all put there to support a single, unau-
thenticated Diffie-Hellman key exchange.” [8]

• Telegram initially asks for the contact list from the phone/desktop
and stores them in their servers. This provides huge social network
information for them that either be attacked on their servers or can
be possibly sold to different authorities without users’ consent. This is
another case when the users have to trust Telegram with their data.

3.2 Technical security issues

• A team of researchers in 2015 announced a man-in-the-middle attack
on Telegram that could maybe have been feasible for a nation-state
adversary. The attack involves generating Diffie-Hellman shared secrets
for the two victims which have the same 128-bit visual fingerprint, so
that users who compare fingerprints will be unable to detect the attack;
using a birthday attack, this only requires 26̂4 operations. Telegram
has since increased the number of fingerprint bits significantly, but the
fact that this vulnerability was ever present is still worrying, since it
was an error that experts should not make. In order to verify each
others’ keys and prevent MITM attacks, users must visually compare
grids of squares in four shades of blue; this introduces a lot of potential
for human error, and users might not notice subtle differences between
two grids, or might not be willing to deal with the hassle of comparing
the grids in the first place.

5



• Until 2014 Telegram’s MTProto was using a modified version of a Diffie-
Hellman key exchange [9]. Instead of using the key generated by the
usual DH protocol, the server would send the users the key XORed
with a nonce. This would allow an evil server to use different nonce

variables for the two users. As a result, the users would still have
the same key, but it would also be known to the server. Once again,
the users had to trust the Telegram server. To their credit Telegram
has solved this issue, but just its presence raises questions about their
commitment to security, because the issue is a very simple one.

• Telegram uses SHA-1 instead of SHA-256 for hashing in some parts
of its protocol. It is known that SHA-1 is not collision-resistant [10].
Even if Telegram, as it claims, is using SHA-1 at a place where it is
not essential to have collision-resistance, using a stronger hash function
would be more reasonable. As history has proved many times, bugs and
missed cases are common.

• Even while using the ’secure chat’ to communicate, Telegram’s mo-
bile application makes it possible for the third parties to observe the
metadata information. For example, adversaries can learn when users
go online or offline with down-to-the-second accuracy. Telegram does
not require agreement from the both parties to set up the communi-
cation between them. For this reason, an attacker might connect to
the user and they will receive the metadata information without the
user knowing anything about this. For this reason, the attacker might
have a good chance of guessing if 2 users communicate by connecting
to both of them and observing their app usage metadata. We call this
an availability leak and will discuss it further in sections 4 and 5.

As the previous examples show, in many instances Telegram users should
completely trust the server, which is ironic as the founders claim was that
they wanted to provide service that is surveillance-proof. Even though many
of the security issues were fixed, some of them should not have been there in
the first place.

4 Availability Exploit

As it was briefly mentioned in previous sections, Telegram exposes the users’
availability data to anyone who has their phone number. Suppose Eve adds

6



Alice as a contact. The Telegram protocol in this case does not notify Alice
about it. Eve, however, gets a response from Telegram whether Alice is
using the service, and if so Eve starts receiving notifications about Alice’s
availability. At no time Alice receives any notification.

Figure 2: The Telegram CLI outputs the user’s name if he/she is using it,
but stay silent if not.

This availability leak is easily visible in the Telegram command line inter-
face (Telegram CLI). Figure 2 shows that using the CLI Eve can tell whether
Akaki is using the application or no.

Moreover, Figure 3 shows that Eve can see when Akaki and Hayk are
becoming available and going offline. She can then correlate the time intervals
when both are online and conclude that they converse. In the next sections
we describe how exactly this exploit can be used to detect if a pair of users
are talking to each other.

4.1 Experiment Setup

We have chosen 15 active Telegram users to track their application usage and
communication. The pool of the users were chosen from the well connected
international students at MIT. This way we knew that they communicated
using telegram on daily/weekly basis.

We have used Telegram command line CLI client to connect to the users.
The server has been deployed that was listening for those 15 users’ packets
and was gathering the metadata for more than 2 weeks. This way, we have
gathered several megabytes of the raw metadata to be analyzed.

4.2 Correlation Algorithm

We have designed a correlation algorithm that takes Telegram usage infor-
mation of 2 users and outputs a sequence of the matches were each match

7



Figure 3: Eve is watching Hayk and Akaki, and can tell when each person
becomes available. Notice a bug: the ”going offline” times are 5 minutes off.

represents time interval with the probability that users were talking in that
time interval (reported probability is always at least 0.5). From the gathered
metadata, for each user, we created a timeline that shows its activity inter-
vals sorted by time. Algorithm finds matchings of 2 users talking based on
their timelines.

Figure 4: Diagram illustrating the main concepts of Correlation algorithm.

We say that active time intervals of Alice and Bob respectively are con-
nected (purple arrow on Figure 2 ) if these time intervals intersect in gap time.
It means that 2 time intervals that have 2 points respectively that are max-
imum gap time far away from each other are said to be connected. We do
it because, it takes time for the user to open the application after he/she
receives a message.

8



Now, by looking at each of the active time interval as a vertex and each of
the connections as an edge we get a bipartite graph. In this bipartite graph
we look for the connected components that has at least 1 edge in it. If we sort
the active time intervals in the connected component, we will see the chain
of overlapping usages of the Telegram application by Alice and Bob. Every
connected pair of time intervals indicates a reasonable probability of the 2
users chatting that time. However, when we have a chain of connected inter-
vals it significantly decreases the chance of Alice and Bob not communicating
with each other.

Each connected component represents a separate possible communication
(set of messages exchanged in relatively short time of period) between the
users. Since the user might leave the Telegram application open (therefore,
no metadata information is delivered that time), we do not take into the
consideration the size of the active time interval. Rather, we believe that
number of the active time intervals is the most important because user going
offline and coming online frequently means that he/she is actively engaged
in using Telegram.

We define a likelihood coefficient to be a measure of how highly likely it
is that a connected component represents an actual communication between
the users. Note that, an edge in the connected component coming from an
active time interval that is connected with many other vertices should be
less influential than an edge whose end points are not connected with any
other intervals. For this reason, rather than counting number of edges in
the connected component, we define likelihood coefficient to be one half of
all the connected vertexes in the component. This way, a very long active
time interval that overlaps lots of other intervals does not increase likelihood
coefficient significantly.

Once we calculate a likelihood coefficient, we define a probability of 2
users talking during the span of time in the specific connected component
by:

Ptexting = 1 − 2−α∗coefficient

The idea is that if the likelihood coefficient is 0, then Ptexting = 0. How-
ever, on every unit added to the coefficient, the probability of not communi-
cating decreases by half. A multiplier α adjusts how smooth or stiff the the
influence of the likelihood coefficient should be.

9



5 Results from Availability Exploit

We implemented the algorithm described above and ran it on the parsed
metadata gathered by our server. Since both of us have been using Telegram
while the server has been running, we adjusted parameters by looking at our
conversations and checking the correctness.

We have found that setting the gap time to 30 seconds and setting α = 1
was giving a reasonable results that was catching all the communications and
also was not slicing the actual conversations too much. The results showed
that around 15% of all the found matchings were false positives. In other
words, sometimes when 2 users happen to use the application at the same
time makes an algorithm to be tricked.

6 Conclusion

In this project we have surveyed the Telegram messenger. When Telegram
has started as a company it became popular because of its claims, public’s
trust in the founders and also the timing (NSA leaks by Snowden were hap-
pened in the same year). Given these claims one would expect very high level
of security from Telegram. However, our survey shows that Telegram has had
serious and simple issues in the protocol (e.g. modified buggy Diffie-Hellman
key exchange) that any knowledgeable security expert could penetrate.

By using the command line interface of Telegram we have been able to
snoop on some of our friends and detect the times when they were conversing
to each other. We believe that this is a serious privacy issue, because it can
be exploited to detect relationships in classroom for example.

Finally, our conclusion is that Telegram, just like any other application
has vulnerabilities. Users have to be aware of this fact, but unfortunately
the claims by companies make non-tech-savvy users to believe that their
messages are unreadable by third parties.

References

[1] Android market app ranklist. http://www.androidrank.org/. Ac-
cessed: 2017-05-16.

10

http://www.androidrank.org/


[2] Secret conversations in facebook. https://www.facebook.com/help/

messenger-app/1084673321594605. Accessed: 2017-05-16.

[3] End-to-end encryption (whatsapp). https://www.whatsapp.com/faq/

en/general/28030015. Accessed: 2017-05-16.

[4] Telegram. telegram.org. Accessed: 2017-05-16.

[5] Vkontakte founder pavel durov learns he’s been fired through media.
Accessed: 2017-05-16.

[6] Telegram messenger cli. https://github.com/vysheng/tg. Accessed:
2017-05-16.

[7] Operational telegram. https://medium.com/@thegrugq/

operational-telegram-cbbaadb9013a. Accessed: 2017-05-16.

[8] Matt green on twitter about telegram. https://twitter.com/

matthew_d_green/status/582916365750669312. Accessed: 2017-05-
16.

[9] Is telegram secure (russian). https://habrahabr.ru/post/206900/.
Accessed: 2017-05-16.

[10] Shattered. https://shattered.io. Accessed: 2017-05-16.

11

https://www.facebook.com/help/messenger-app/1084673321594605
https://www.facebook.com/help/messenger-app/1084673321594605
https://www.whatsapp.com/faq/en/general/28030015
https://www.whatsapp.com/faq/en/general/28030015
telegram.org
https://github.com/vysheng/tg
https://medium.com/@thegrugq/operational-telegram-cbbaadb9013a
https://medium.com/@thegrugq/operational-telegram-cbbaadb9013a
 https://twitter.com/matthew_d_green/status/582916365750669312
 https://twitter.com/matthew_d_green/status/582916365750669312
https://habrahabr.ru/post/206900/
https://shattered.io


Figure 5: Matchings found by the correlation algorithm.

Figure 6: Corresponding messages to 5. The second to last matching corre-
sponds to the messages in the application (time 23:31 - 23:35)

12


	Introduction
	History and Background
	Telegram Functionality
	Telegram Clients

	Telegram Architecture
	Known and Fixed Security Concerns
	Non-technical concerns
	Technical security issues

	Availability Exploit
	Experiment Setup
	Correlation Algorithm

	Results from Availability Exploit
	Conclusion

